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We derive a rotationally invariant form for the elastic energy of a smectic-C liquid crystal. The
magnitude of the ¢ director, but not its direction, can screen layer strain just as two independent
components of the director screen strain in smectic-A liquid crystals. Type I and type II smectic-C
liquid crystals can be classified according to whether the c-director penetration depth A. is less than
or greater than the smectic coherence length {. We calculate the energies of isolated dislocations
and the interaction energies of parallel dislocations as a function of direction. We find an attractive
interaction at large distances between like-sign screw dislocations and a repulsive interaction at short
distances, leading to a minimum energy separation.

PACS number(s): 61.30.—v

I. INTRODUCTION

Smectic liquid crystals are layered structures. Their
energy is invariant with respect to simultaneous rigid uni-
form rotations of both the layers and molecular orienta-
tion specified by the Frank director n. In the de Gennes
free energy [1] for the smectic-A phase, covariant deriva-
tives enforce this invariance. This free energy establishes
an analogy between the nematic-to—smectic-A transition
in liquid crystal and the normal-to-superconducting tran-
sition in metals and a one-to-one correspondence between
many properties of superconductors and smectic-A liquid
crystals. In particular, it classifies smectic-A liquid crys-
tals as type I or type II depending on whether their twist
(or bend) penetration depth A is less than or greater than
their coherence length £, and it leads to the prediction [2]
of the existence of the twist-grain-boundary (TGB) phase
[3] as the analog of the Abrikosov vortex phase [4]. The
two independent components of the Frank director screen
elastic layer distortions in liquid crystals just as the vec-
tor potential screens phase distortions in superconduc-
tors. In type I systems, the director relaxes quickly to
an equilibrium value determined by layer strains, and
the Landau-Peierls elastic energy [5,6] expressed in terms
of layer strain alone provides an adequate description of
elastic properties, including energies of dislocations. In
type II systems, the full covariant energy is needed for
a complete description of elastic distortions, particularly
those associated with dislocations [7].

Smectic-C liquid crystals are also layered structures,
but the Frank director, rather than pointing normal to
the layers, has a nonvanishing component, called the c di-
rector, in the plane of the layers. The energies of smectic-
C liquid crystals, like that of smectic-A liquid crystals
must be invariant under simultaneous rotation of layers
and director. It should, therefore, be a function of covari-
ant derivatives enforcing rotational invariance. Though

the type I elasticity of smectic-C liquid crystals has been-

extensively discussed [8,6,9], a covariant elastic theory for
smectic-C liquid crystals has not, to our knowledge, been
introduced. However, rotationally invariant free energies

1063-651X/95/52(6)/6240(10)/$06.00 52

[10,11] to describe the smectic-A-to—smectic-C' and the
nematic-to—smectic-C transition have been introduced.
In this paper, we will derive the covariant elastic energy
for a smectic-C liquid crystal and use it to calculate ener-
gies of isolated and interacting dislocations. This energy
shows that the magnitude, but not the direction, of the ¢
director can relax to relieve layer strain. From this we can
define a c-director penetration depth A, and distinguish
type I and type II smectics according to whether A./€ is
less than or greater than unity. An appealing feature of
the simplified free energy we use to calculate dislocation
energies is that the conventional singular strain [propor-
tional to tan™!(z;/z2), where z; and z, are orthogonal
coordinates] associated with a dislocation uniquely deter-
mines the total strain and director distortion and thus the
dislocations energies. This is in contrast to type I elastic
theories [9] for which there can be two distinct dislocation
solutions and no obvious criterion other than energetics
to specify which solution is the correct solution.

The most important results of this paper are summa-
rized in Figs. 1 and 2. Figure 1 shows the energy per unit
length of a linear dislocation in the plane defined by the
layer normal (z direction) and the ¢ director (z direction)
as a function of angle «y of the core relative to the z axis.
A pure screw dislocation (y = 0) has the lowest energy,
but the energy does not increase rapidly with v. Figure
2 show the interaction energy between two parallel like-
sign dislocations whose cores lie in planes, separated by
a distance y, parallel to the zz plane and make an an-
gle /10 with respect to the z axis. At distances y much
greater than A, the interaction is attractive, falling off as
—1/y%. At distances of order A. the interaction becomes
repulsive, and there is a negative minimum energy at a
distance somewhat larger that A.. The magnitude of the
energy minimum is greater that the energy increase in
core energy produced by aligning cores along v = 7/10
rather than v = 0. As we shall see in the companion ar-
ticle, this fact plays an important role in stabilizing the
experimentally observed TGB¢ phase [12-14].

This paper is divided into five sections, of which this
is the first. Section II presents a general derivation of
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FIG. 1. The energy per unit length [measured in units of
€0 = Dd?/(87)] of a dislocation as a function of angle ~ its
core makes with the z axis. The tilt angle Ao [Fig. (3)] is
m/10, the parameter 3 [Eq. (4.6)] is equal to 3, and A./¢ =
10.

covariant elastic energies valid for both smectic-A and
smectic-C' liquid crystals and discusses both type I and
type II smectic-C elasticity. Section III derives general
expressions for the energies of dislocations for type II
systems. The energies of dislocations in type I systems
can be obtained as a limit from the results for type II
systems. Section IV calculates the energies of individual
dislocations as a function of the angle the core makes with
the layer normal and the c director. Section V calculates
the interaction energies between parallel dislocations as
a function of distance and angle. Finally, the Appendix
discusses the origin of the differences between our results
and those of Ref. [9].

II. COVARIANT ELASTICITY

Smectic liquid crystals are layered structures with a
mass density that is periodic in one direction and trans-
lationally invariant in the other two orthogonal direc-
tions. They are characterized by an equilibrium layer
spacing d and a complex mass-density-wave amplitude
¥ = |ihle P, where go = 27/d and u is the layer dis-
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FIG. 2. The interaction energy per unit length (in units of
€0) as a function of separation for two parallel dislocations
whose cores lie in planes, separated by a distance y, parallel
to the zz plane and make an angle v = 7/10 with the z axis.
This calculation was done with Ao = 7/10 and 8 = 3.
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FIG. 3. (a) Schematic representation of the layer normal
vector N, the Frank director n, and the ¢ director for an
arbitrary layer distortion. (b) The equilibrium vectors Ny,
no, and co in the smectic-C phase.

placement variable. In addition, there are two distinct
directions in smectics: the layer normal specified by the
unit vector N and the direction of average molecular
alignment specified by the Frank director n, as shown
in Fig. 3. We will denote the angle between n and N
by A so that n-N = cos A. Deep in the smectic phase,
one can regard the magnitude |¢| of the mass-density
wave as fixed because its deviations from local equilib-
rium are energetically costly. Variations dd in the layer
spacing, which we can parametrize by a wave number
ds = go + 8¢ = 2w /(d + 8d), and in n and N can lead to
low-energy distortions. In this section, we will present a
general derivation of the covariant elastic energy for both
smectic-A and smectic-C phases. Though this derivation
for the smectic-A phase is not really new, it is enlight-
ening. The free energy we obtain for a smectic-C' liquid
crystal has not, to our knowledge, appeared before.

A. Definition of variables

In smectic-A liquid crystals, the equilibrium director
ng is spatially uniform and parallel to the layer normal
Ny so that ng - Ng = 1. We will take Ng = e, to be
along the z axis. In smectic-C liquid crystals, ng tilts
relative to Ng, and ng - Ngo = cos Ay, where Ag is the
equilibrium tilt angle [Fig. 3(b)]. Equilibrium tilt order
is characterized by the equilibrium ¢ director cg, with
co - No = 0 and

co =sin Ag (2.1)

such that

ng = Cp + cos AONO. (22)

Distortions of N from equilibrium can be parametrized
in terms of Vu:

(=Viu,1—08,u)
(1= 002 + (Vo w)2)i/2
~(V,iu,1-— %(V_Lu)z)
= No+ N .

(2.3)
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FIG. 4. This figure shows the vectors ng, ng + dng, co, and
¢ = cp + dc.

In the smectic-A phase, distortions of n can be
parametrized by én, the component of n in the zy plane:

n=(on,/I=(@n)?) ~ (bn,1 - }(6n)?) . (24)
In the smectic-C phase, n can be paralmetrized as
n = (c,v1—c?), (2.5)
where
¢ = (co + dc)(cos ¢, sin ¢, 0) (2.6)

is the c director (see Fig. 4). The linear deviations of c
from co = ¢o(1,0,0) is

dc = bce, + codgpe, = (bc,c0d9,0), (2.7)

and

dn = (8¢, cod¢p, — cos Agcodc). (2.8)
Thus deviations in n from equilibrium are specified by
changes éc in the magnitude of the c director (i.e., in the
projection of n onto the plane perpendicular to Ng) and
by changes §¢ in the direction of the ¢ director relative
to the z axis (the direction of equilibrium order).

B. Rotationally invariant free energy

The free energy density f of both smectic phases must
be invariant with respect to simultaneous spatially uni-
form rotations of n and N but not of n and N separately.
It, therefore, can only be a function of

n-N =cos A4, (2.9)

gradients of n, the inverse layer spacing ¢,, and rotation-
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ally invariant gradients of u. In addition, f must reduce
to the Frank free energy density of a nematic,

fo=3K1(V 1)+ ;Ko[n- (V xn)]?

+1K3[n x (V x n)]? (2.10)
when smectic order vanishes. Thus we can write
f=fn+fsm(n'NaQs)+fu- (2.11)

The energy f, measures energy of layer bending not
associated with director splay. We will consider it in
more detail shortly. The equilibrium smectic wave num-
ber go(cos A) as a function of cos A is determined by
minimizing fim(cos A,g,) with respect to ¢,. For g,
near go(cos A), Fym can be expanded to second order in
8q = g5 — go(cos A):

fsm(cos A) = f,(cos A) + 1B[gs — qo(cos A)]?, (2.12)
where fy(cos A) = fsm(cos A, go(cos A)). The final equi-
librium value of the tilt angle A (or equivalently the
magnitude of the c director) is obtained by minimiz-
ing fsm(cos A) over A. To carry out this procedure,
it is useful, but not essential, to introduce an explicit
phenomenological form for f, that has both smectic-A
(Ao = 0) and smectic-C (Ao # 0) minima:

fs(m-N)=1D(n-N)?+ 1E(n-N)* (2.13)

The second term in Eq. (2.12) does not contribute to
the determination of A because g5 — go(cos Ag) = 0 in
equilibrium with A = Ay. Therefore minimization of fs,
over A produces

Ofs _

0A
where f! = dfs/d(cos A). This equation has solutions
Ao = 0 (smectic A) and f; = 0 (smectic C). If f, is
given by Eq. (2.13), then Ao = 0for D > Eor D <0
and cos? Ag = D/E for 0 < D < E. Thus

—flsinA =0, (2.14)

0, 18%fs
A 2 A2

to second order in deviations 64 = A — Ay of A from
equilibrium where

?fo _ { —f:(0)
9A% ~ | f!'(cos Ag)sin® A

(6A)? (2.15)

(smectic A)
(smectic C),

(2.16)

and f9 is the equilibrium value of f,.
The equilibrium smectic wave number is go =

go(cos Ag). As usual we can express g = ¢, — qo as
qo0,u and
18%f 1
=f2+ 5542047 + 5 2 _ Lo,ubA, (2.17
fom = fo + 5 522 (04) +5B(9:u)” - LOudA, ( )

where B = B(cos Ag)q2 and L = qo(8q0/dA)B.
We now return to f,,. The energy associated with layer
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compression has been included in Fi, via the last term in
Eq. (2.12) arising from (8q)?. There is an energy cost as-
sociated with layer bending independent of director splay.
In the smectic-A phase, it is simply

& =1K,(Viu? (2.18)
The constant K, has the same units (force) as the Frank
elastic constant in f,. It exists, however, only in the
smectic phase and tends to zero with |1|. Thus, in most
materials, K, < K;, and K, is generally ignored in
the smectic-A phase. In the smectic-C' phase, f, can
be anisotropic:

fS = 1KZ(0,u)® + 1KY (0yu)® + K3¥(8,0,u)?. (2.19)

The last term in this expression could also be expressed
as KZ¥02ud2u with the addition of a Gaussian curva-
ture term %K;yeikej,ai(ajuaka,u), which integrates to
the surface. In what follows, we will find that f, cannot
be ignored in the smectic-C' phase. We will, however,
ignore its anisotropy and use the smectic-A form [Eq.
(2.18)]. This, as we shall see, will allow us to employ stan-
dard procedures to calculate dislocation energies that do
not require us to keep track of what happens at interior
surfaces (i.e., at the surface of dislocation cores).

C. The smectic-A elastic energy

To obtain a final expression for covariant elastic en-
ergies, we need to express 0N in terms of the variables
parametrizing § 4 and én [Egs. (2.3) and (2.8)]. In the
smectic-A phase, Ag = 0, and

coslA=n-N=1-— —;—(VLu+(5n)2 ~1-— %(514)2,

(2.20)
or
(64)% = (V  u+én)2. (2.21)
Thus
fa, = 1B(8,u)* + 1D(V_iu+én)® + 1K, (Viw)?
+fn(n), (2.22)
where D = — f}(0). There is no § A9, u cross term because

8qo/8A = —(8go/0 cos A)sin A = 0. This is the familiar
covariant low-temperature form of the de Gennes free en-
ergy [1,7]. It shows that the two independent components
(6n, and ény) of the director relax locally to screen layer
distortions and thereby minimize (V u + dn)2. Pene-
tration depths Ay and A3 for twist and bend can be ob-
tained from Eq. (2.22) by comparing the coefficients of
[n-(V xn)]? and [n x (V x n)]? with (6n)%:

A2 = (Ko/D)Y?, As = (K3/D)Y2. (2.23)
In type Il smectic-A4 liquid crystals, these penetration
depths are larger than the smectic coherence length ¢,

whereas in type I systems they are smaller than &.
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The usual smectic elastic energy expressed as a func-
tion of u only is obtained by minimizing f2 over én. To
lowest order, én = —V j u, and

4 = 1B(0,u)? + (K1 + Ku)(Viu) (2.24)
If K, < Kq, then K; + K, can be replaced by K;. In
this case, all layer bending energy is produced by director
splay. Equation (2.24) can be used to obtain dislocation
energies in type I smectics [15,16] where the core energy
comes predominantly from the destruction of smectic or-
der. In type II smectics, dn differs from —V  u in a
region of radius Az 3 > £ from the core and Eq. (2.22)
should be used.

D. Type II smectic-C elastic energy

In the smectic-C phase,

6(n-N)=—sindpdA =mnp-0N+én-Nj
= —tanAgdc —co- Vu (2.25)
so that d A = (8c/cos Ag) + Oyu. Using this expression
and Eq. (2.8) for én in f with K; = K3, we obtain
f=1D(6c+ ad,u)® + %(8,u)2 — LA, u(bc + adyu)
+1c2K, [0,66 + (8 — a718.) 6¢)” + LK, (Vi w)?
+1ciK, [(ey x V)égp + {(ex —a"'e;) x V} 50]2,
(2.26)

where L = L/cos Ag, D = f! tan® Ag [= 2E sin® 4, for
Eq. (2.13)] and where we introduced

a=cosAg = /1 — c2.

This free energy shows that the director can screen layer
distortions, but only in one direction rather than two as
in the smectic-A phase. The magnitude of the ¢ director
can adjust to minimize (dc+ad;u)? — LI, u(dc+ adyu).
In what follows, we will use a simplified form of Eq.
(2.26) in which we set K; = K; = K and L = 0. Setting
K, = K, decouples §¢ and ¢, and setting L = 0 decou-
ples 8,u and (dc+a8,u). We will also replace K, (V2 u)?
by K,(V2u)2. We do not expect these simplifications to
lead to any qualitative modifications of our results for dis-
locations in smectic-C' liquid crystals. Our free energy is
thus

f = 3D(@sc + adu)* + 1B(0,u)?
+%KC(V5C)2 + %K¢(V¢)2 + %Ku(v2u)2,

(2.27)

(2.28)

where K. = c3K (1 + cos? Ag)/cos? Ag and K4 = c2K.
The penetration depth A, for relaxation of the magnitude
of the c director is

A = (K./D)Y2. (2.29)

As in smectic- A liquid crystals, one can distinguish type I
and type II systems: in type II smectic-C liquid crystals,
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Ac > & whereas in type I smectic-C liquid crystals, A, <
£. In type II systems, there is a substantial contribution
to dislocation energies arising from deviations of §c from
cos ApO,u in a region with A, of the core.

E. Type I smectic-C elasticity

In type I systems, dc ~ cos AgO3,u everywhere except
in the core region of radius £ < A, where % itself is zero.
The relaxed elastic energy for type I systems is then

S = 1B(8,u)? + 1o’ K [V (8,u)]? + LK, (V?u)2.
(2.30)

Here we have written V(9,u) rather than V8,u to em-
phasize that when there are dislocations present and
V x (Vu) # 0, interchanging V and 8, is not permit-
ted. We will return to this point in Sec. IV. Note that
when K. — 0, we regain the elastic energy of a type I
smectic-A liquid crystal. This will be a useful limit for
checking calculations to follow. If we assume there are
no dislocations, we can write Eq. (2.30) as

S = 1B(8:u)? + 1K, (02u)® + 1K, (82u)? (2.31)
+Kay(0:0,u)* + K (97u)(9ju) + 1 K4(V)?,

where we ignored terms in (82u)? and where

K, = ach + K., Ky = Ky,

K.y = 1o’K. + K,. (2.32)
Normally, we are interested in bulk properties in systems
in which 8;0;u has no spatially uniform part. In this
case, the terms in (8,8,u)? and 82ud2u can be combined
via integration by parts, or equivalently by the introduc-
tion of a Gaussian curvature term that integrates to the
surface. Thus, we can write the free energy in terms an

integral over Fourier modes as
po- L [ 2a

“ 2 /) (2n)3
+2K.yq2q2 + Kyqt]lu(q) |2

[Bq? + K.q;
(2.33)

Both Egs. (2.31) and (2.33) must be positive definite for
thermodynamic stability. The quantities 82u, d2u, and
0,0y u are all independent. Thus K., K,, and K., —
K, = }a’K., and the determinant K,K, — K2 must
be positive. The determinant K, K, — K2 = o?K_ K, is
positive provided K. and K, are positive, as they must
be. The finite wave-number free energy of Eq. (2.33)
is positive provided B, K., K,, and K., are positive.
There is no requirement that the determinant K, K, =
K2, be positive because g2 and g2 are positive. In fact,
in the present case, K. K, — Kfy = —iach is negative.
References [8] and [9] erroneously imposed the constraint
K. K, — sz > 0. We will discuss the consequences of
this assumption in the Appendix.

Note that the (V2u)? terms in this free energy are
anisotropic even though we assumed that the part
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(a) (b)

FIG. 5. Schematic representation of layer bend (a) in the
yz plane and (b) in the zz plane. Bend in the zz plane in-
volves both director bend and splay and cost more energy
than bend in the yz plane, which does not.

K,,(V2 u)? arising from layer bending was isotropic. Note
also that the coefficient of (82u)? is K, whereas the other
two terms in (V2 u)? have coefficients including o?K..
As we have already discussed, K, < K.. This implies
that the bending of layers in the yz plane cost much less
energy than bending them in the zz plane because the
latter involves director bend and splay whereas the for-
mer does not. See Fig. 5.

III. DISLOCATIONS: FORMAL DEVELOPMENT

Dislocations are topological line defects with a one-
dimensional core along which the smectic order parame-
ter 1 goes to zero. The line integral around a closed loop
T’ enclosing a single dislocation core is kd = b, where k is
the integer-valued strength of the dislocation:

}idu=/rvu-d1=/SV><(vu).dszkd, (3.1)

where S is any covering surface of I'. Thus dislocations
give rise to singular contributions to Vu with a non-
vanishing curl, and u can be divided into an analytic
part () and a singular part ©(®: u = u(® 4 u(*), Then,
defining v = Vu(*), we have

Vu=Vu® +v, (3.2)
with
V x v =b(x), (3.3)
where
b(x) = 3 k.d / ds5(x — R, (s)) (3.4)

is the dislocation density, where R, (s) is the position of
dislocation p with strength k, as a function of its arc-
length s. We can always choose v to be divergenceless.
In this case v(x) or equivalently its Fourier transform,

(3.5)

v(a) = 9b(8)

is uniquely determined by b.
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A. Type II systems

The elastic energy [Eq. (2.28)] depends on the total
displacement field u and can be written as

fu = 31B(0:u +v,)? + 1 D[éc + a(8,u® + v,)]?
+1K, (V)2 + 1K (Véc)2. (3.6)

Note that this energy is a unique and well-defined func-
tion of v because it can be written as an unambiguous
function of Vu. This would not be the case had we al-
lowed K, to be anisotropic with an energy proportional
to (8:0,u)2. Note also that v does not appear in the K,
terms because we chose it to be proportional to (VZu)?2
rather than (Vu)2. This will simplify future analysis.

Using Egs. (3.5) and (3.6), we can find u and éc for
any given dislocation density b(x). We merely minimize
the free energy derived from f, over u and dc for a given
v determined by b. To carry out this procedure, it is
convenient to recast f in a more compact form. Let ¢; =
w(® and ¢y = dc. Then

F = [ E2iga0G (V)(x) + 20a(x)a(x)

+Bv?(x) + a®*Dv2(x)], (3.7)

G1(V) = ( —BV2? - a?DV? + K,V* —aDV, )

aDV, D - K.V?
(3.8)
and
A1(x) = BV,v, + o>DV v, (3.9)
A2(x) = aDv,. (3.10)

Minimization over ¢, leads to the Fourier-space expres-
sion

$a(q) = —Gap(a)As(a)

so that F' can be expressed as a function of v alone. The
result is

(3.11)

F-1f E‘;‘i}%g[“)‘a(—Q)Gab(Q))‘b(q)

+Blv:(q)|* + &’ Dlvz(q)|?], (3.12)
where
A1(q) = —iBg.v.(q) — ia’Dg,v.(q),
A2(q) = aDv.(q), (3.13)
and
D iaDg,
Gar(a) = 315 ( _ia(g)% o ) (3.14)
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with
D(q) = D + K.¢?, (3.15)
B(q) = Bg: + o*Dg; + Kuq*, (3.16)
A(q) = B(q)D(q) — &®D?q;. (3.17)
Finally, expressing v in terms of b via Eq. (3.5), we
obtain
—I/dsqb*( )Us; ()b 3.18
'—2 (27‘,)2 : Q)i q J(q)’ ( . )
where
Usi(@) = a7 Dsi(@) (3.19)
"Jq _qu(q) quv .
with
U.-(q) = Bla’DK.q% + DK,q* + Kchq‘l]q;‘;, (3.20)
Uyy(a) = o BDK.(q3 + ¢3)* + BDK.q’q}
+K.K.q*(Bg? + o’Dq?), (3.21)
U..(a) = a*’DK.[Bq} + K.g*lq;, (3-22)
0211(‘1) = _B[O‘ZDKC(‘Ii + qf)
+Ku(Dg* + Kcq*))42ay, (3.23)
Uy:(q) = —o’DK.[B(q; + ¢2) + Kug®layg- ,  (3.29)
Usz(q) = o’ BDK 42034 (3.25)

The expressions derived in this section will permit us
to calculate the energy and strain field of individual dis-
locations and the interaction energy of dislocation pairs
and arrays. They are valid at all length scales larger
than the coherence length £. In particular, they apply
to type I systems at length scales between the £ and the
penetration depth A.

B. Type I systems

In type I systems, where the £ and the core size are
larger that A, we calculate dislocation energies using
the type I free energy of Eq. (2.30). Replacing Vu by
Vu(® 4 v, we obtain an equation for u(*) in terms of v
by minimizing Eq. (2.30) with respect to u(®):

—B8,(8,u® +v,)

+V2[K,Vul® + o? K (82u® + 8,v,)] = 0. (3.26)

The order of gradients in this expression is important:
V29,v, cannot be replaced by 8,V2v,. Equation (3.26)
leads to

u(“)(q) = G(q)[iBq.v: + ia’ K .q.q%v,), (3.27)
where

G(q) = [Bg? + kug® + o’ Kcq?g2] " (3.28)
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Using Eqs. (3.27) and (3.5) in the type I free energy [Eq.
(2.30)], we obtain dislocation energies that are identical
with the D — oo limit of the type II energies we just
calculated. In this limit A(q) — DG(q) and all of the
energies ﬁij have terms at most linear in D so that the
limit A=1U;; as D — oo is well defined.

IV. SINGLE DISLOCATIONS

Equation (3.18) can be used to calculate both the
strain and strain energy of isolated dislocations and the
interaction energy of pairs of dislocations. We begin with
isolated dislocations with a rectilinear core aligned along
a unit vector e. Then

b(x) = ekds? (x), (4.1)
where 622)(x) is the two-dimensional § function in the
plane perpendicular to e and k is the strength of the
dislocation. The Fourier transform of Eq. (4.1) is

b(q) = e27kdd(q - e) = ekdLbqg.e,0. (4.2)

The strain energy per unit length of a dislocation aligned
along e is then

E _ k?d?
L~ 2

2
d_‘ZE_U(e),

Tny? (4.3)

€g =

where q. = q — e(e - q) lies in the plane perpendicular to
e and where
U(e) = eiU,-j (qe)ej. (4.4)
The integral in Eq. (4.3) has an upper cutoff at A ~ £71.
The total energy per unit length, € = €. +¢,, of a dislo-
cation includes a part €., arising from the destruction of
smectic order in the core in addition to the strain energy
€, arising from distortions of u and dc outside the core.
For strongly type II systems, €, can be much larger than
€c-

A. Single screw dislocation

For a screw dislocation b is parallel to the z axis. Thus,
for a single screw dislocation with Burgers vector of mag-
nitude d, we have e(q) = (0,0,d), q. = g(cos,sin6,0),
U(e) =U,.(q), and

2w e/ in2
€ = %ade"/O Z_: o g%l+,812)z10222+p2’
(4.5)
where we introduced the quantity
B? = o’K./K,,. (4.6)

In the type I limit, A\, — 0, and, in contrast to screw
dislocations in smectic-A liquid crystals, the energy
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s_achd_2\/1+ﬁ2—1 (@.7)
= g & 5 .

is nonzero. This is because there is a nonzero long dis-
tance strain in the smectic-C phase that is not present in
the smectic-A phase. In type II systems, there are addi-
tional contributions to the energy arising from distortions
between the core radius £ and the penetration depth A..
The integral in Eq. (4.5) can be evaluated exactly. The
result is

€ = 60%:_ [\/(1 +A2)(1+ 52 + A%) — A®

_ 7. g2 V1T HA2+ V14 A%
ViTEs “( ey ’

where A% = A2/¢2 and where we introduced

. _ D&
07 gr -

In strongly type II systems, this will be the dominant
contribution to the energy of a screw dislocation.

The analytic part of the displacement field can be ob-
tained from Eq. (3.11) in type II systems or Eq. (3.27) in
type I systems. The type I solution applies to both type
I and type II systems at distances greater than A. from
the core. It is

* dg.dq
a _ 2 k4 Yy
w6 =~ d/_w (2m)% q%(q? + B2q2 + A2¢%)
d V1t 32
n1Y 4 L1 W g
T 27 x

The first term in this equation exactly cancels the non-
analytic part arising from v. Thus, the complete solution
for u, is

(4.8)

(4.9)

qzqyei(QI z+qyy)

~ ——1t

g (%) = (4.11)

itan_1 LA e 1+5
L T

This is indeed a dislocation solution that minimizes the
type I free energy. From Eq. (2.30), we have

K, V?[V? + 3%8%]u = 0. (4.12)

A wide class of solutions to this equation can be ex-
pressed as linear combinations of solutions to VZu = 0
and (V2? + 8282)u = 0. The dislocation solution to the
former equation is simply the singular solutions u(®) =
(d/2m) tan~'(y/z), whereas the dislocation solution to
the latter equation is Eq. (4.11). Equation (4.12) is,
however, misleading. Because the singular part of Vu
is not explicitly displayed, it appears that the gradient
operators commute (i.e., V282u = §2V2y). When u is
singular, however, the gradient operators do not com-
mute. Equation (4.10) tells us that the V2u = 0 solution
is not acceptable and the Eq. (4.11) is the only correct
large-distance displacement field for our free energy.
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B. Single edge dislocation

The core of an edge dislocation lies in the zy plane.
Thus, for a single linear edge dislocation whose core
makes an angle w with the = axis, we have e =
(cosw,sinw,0) = de and q. = (g1 sinw, —qq cosw, g2).
The energy per unit length is the given by Eq. (4.3) with

U(e) = cos’?wU,, + 2sinw cosw Ugy + sin? w Uyy,

(4.13)

where U;; is given in Egs. (3.20)-(3.25). Even in the
type I limit, the integral in Eq. (4.3) cannot be done
analytically. An edge dislocation with b along y induces
director splay and bend and has an energy determined
by K., whereas one with b along z does not and has and
energy determined by K, < K.. Thus, we expect the
energy of a dislocation with b along the z axis to have a
lower energy than one aligned along the y axis. Figure 6
shows the energy per unit length of an edge dislocation
as a function of w calculated for Ap = 7/10, 8 = 3, and
Ac/€ = 10. As expected, the lowest energy is at w = 0
and the highest at w = 7/2.

We can evaluate u(®) far from the dislocation core using
the type I expression of Eq. (3.27). The result is that the
dominant contribution to the total u at large distances
is identical in form to that of a smectic-A liquid crystal.
For b along z, v, = 0, 8,u = 0, and Eq. (3.26) reduces
exactly to the equation for an edge dislocation [15,16] in
a smectic-A liquid crystal. Thus for b along =z,

u= gsgn(z)[erf(y/\/4Au|;|) +1],

where A2 = K,,/B and erf(z) = (2//7) [ e~t"dt. When
b is along y, v, = —ig.b,/q? is nonzero, and the terms
following K. in Eq. (3.26) are nonzero. Nonetheless, the
large distance solution still has the same form as Eq.
(4.14) with y replaced by = and A2 by (K, + o2K,)/B.
There are, however, analytic terms that contribute closer
to the core even in type I systems.

(4.14)

6
5
(=}
<
w
4
3
w/n
0 0.1 0.2 0.3 0.4 0.5

FIG. 6. Energy per unit length of an edge dislocation as a
function of the angle w b makes with the = axis for B = D,
Ao = /10, B = 3, and A./€ = 10. The energy is lowest for
w = 0 and highest for w = 7 /2.
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C. Single screw-edge dislocation

Edge dislocations create more far-field distortions that
do screw dislocations, and one would expect in gen-
eral that screw dislocations would have lower energy
that edge dislocations. A mixed edge-screw dislocation
with b in the zz plane has b = d(sin+,0,cos~y) and
de = (g1 €0s7,q2, —¢q1 siny), and its energy €3° per unit
length is given by Eq. (4.3) with

Ue) = cos?yU,, + 2sinycosy Uy, + sin? v Us,,. (4.15)

In Fig. 1, we plot €¢/¢q for B = D, Ap = 7/10, B = 3,
and A,/ = 10. As expected, the screw dislocation with
~ = 0 has the lowest energy and the pure edge dislocation
with v = w/2 has the highest energy.

V. INTERACTING DISLOCATIONS

In this section, we will investigate the interaction po-
tential between parallel screw, edge, and mixed screw-
edge dislocations. In the preceding section, we showed
that a single screw dislocation in a smectic-C liquid crys-
tal, unlike its smectic-A cousin, has far-field strain en-
ergy even in type I systems. This far-field strain leads
to far-field interactions between dislocation, dying off as
the inverse square of distance, which is anisotropic, at-
tractive for like-sign dislocations separated along y, and
repulsive for like-sign dislocations separated along z. At
distances of order A, the interaction becomes purely re-
pulsive, and there is a minimum energy separation for
dislocations separated along y. This is in contrast to the
situation in the smectic-A liquid crystal, where the in-
teraction between like-sign dislocations falls off exponen-
tially with distance and is purely repulsive. As we have
seen, the far-field strain of edge dislocations in smectic-C
liquid crystals is similar to that of smectic-A4 liquid crys-
tals. There is thus a far-field repulsive interaction be-
tween like-sign edge dislocations whose separation along
z is not zero. For edge dislocations in the zy plane there
is only near-field repulsion. For mixed screw-edge dislo-
cations with cores making an angle v with the z axis, the
energy minimum that exists for pure screw (y = 0) di-
minishes and moves to larger separation as « is increased,
until it disappears altogether at a critical value of +.

The interaction potential between parallel equal
strength dislocations with b = de separated by a vec-
tor x in the plane perpendicular to e is

2
Uint (x) = dZ/&eiqe-xU(e)’

@) (5.1)

where U(e) is given by Eq. (4.15). For screw dislocations,
€ =€;,(ge = (q:c, q'yvo) and

qzei(‘h z+qyy)

oo
(s) — 272 szde
U, (x) = a’d’K, [oo (2m)2 qz + (14522 + A2¢*°

(5.2)

The large distance behavior (|x| > A.) of this function



6248 YOSHODHAN HATWALNE AND T. C. LUBENSKY 52
0.15 0.3
g > 0.10 \ y=m/10 0.2 =n/s
0.1 0.05 :
0.05 1 2 3 4 0.1
-0.10|
ol -0.15 005 I NZ——T °
-0.2
0.6 ~v=3m/10 0.8 ~y=2m/5
"0.3 0_5
0.4 0.6
0.3 0.4
FIG. 7. Interaction energy as a function of separation y for 0.2
unit strength screw dislocations. The interaction is attractive 0.1 0.2
at separations large than A. and repulsive at short distances. T Tt T 3 n 5 3 T 3

It has a negative minimum energy at y or order A..

can be obtained by setting A, = 0 (yielding the type I
limit). The integral over q. can now be done analytically.
Performing the contour integral over ¢, first, we obtain

2K, d? /°° dgy 4y Cos gy e—ulzl/v/1+82
o 2 1+ 52

Ut (%)

=SS A [T sl
JitF o 2m
o?K.d? &2 —y?

= o r—1+ﬂz (_,;:2+y2)27

where £ = z/4/1+ B2. This potential is attractive for
z = 0, repulsive for y = 0, and equal to zero along z =

+4/1+ B2y. The complete interaction potential in Eq.
(5.2) can be evaluated numerically. The results for B =
D, B =3, and z = 0 is plotted as a function of y in Fig.
7. The is an energy minimum at separation y ~ 1.4\..
The energy of an edge dislocation with core along the

(5.3)

T axis is
U de daydg,  9E(1 4 Acg®)eilavyta:=)
int = / (2m)2 g2(1 + A2g2) + A2q% + A272g8°
(5.4)
where A\, = K, /B. In the type I limit, we can set A\, =
S
0.8
0.6
0.4
0.2
Y/ A
1 2 3 4 5

FIG. 8. The interaction energy as a function of separation
y of two unit strength edge dislocations with cores along z for
B =D, Ao =7n/10, 8 = 3.

FIG. 9. Energy as a function of separation y for parallel dis-
locations with b in the zz plane for different values of vv. The
energy minimum becomes less and less pronounced, moves to
larger values of y, and eventually disappears as 7y increases.

0, and the resulting energy is identical to that for edge
dislocations in smectic-A liquid crystals:

1/2
1.5 (’\_u) o—v*/(@Aulz])
1

Ue
7|2|

int — (55)
The complete evaluation of Eq. (5.4) for z = 0 is shown
in Fig. 8. The potential is repulsive for all separations y.

For parallel mixed screw-edge dislocations in the zz
plane, e = (sinv,0,c0s), gqe = (q1 cos, g2, —¢g1 sin~y).
The interaction potential for v = 7/10 is shown in Fig.
2 and for various values of « in Fig. 9.

VI. SUMMARY AND DISCUSSION

We have introduced a covariant formulation of the elas-
tic free energy for a smectic-C liquid crystal, which allows
us to identify type I and type II smectic-C liquid crys-
tals. We use this free energy to calculate the energies
of isolated and interacting dislocations as a function of
their orientation relative to the layer normal and the ¢ di-
rector. Parallel dislocations with core axes in the plane
of the layer normal and the c director (the zz plane)
and separated along the normal to this plane (y direc-
tion) have an attractive interaction at large separation
and a minimum energy separation of order the penetra-
tion depth X, provided the projection of their axes along
c is not too large. Parallel dislocation in the zz plane
but separated along z rather than y have only repul-
sive interactions. In another paper [17], we will show
how this attractive interaction can explain many of the
experimentally observed properties of the TGB¢ phase
[12-14].
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APPENDIX

In this appendix, we will discuss briefly the relation
between our results and those of Ref. [9], which used an
elastic energy

f=1K,(82u)? + 3K, (02u)? + K.y (0,0,u)?, (A1)
in which there was no separate (82u)(82u)? term. Fol-
lowing Ref. [8] the constraint K, K, — K2, > 0 was un-
necessarily imposed to ensure stability. As we saw in Sec.
IIE, only K., K, and K_, need be positive for stability.
The equilibrium equation for u is
(K03 + 2K, 0207 + K,05)u = 0. (A2)
Now consider two cases: (1) u® = K2, /(K.K,) < 1 and
(2) u® > 1. Case (1) corresponds to the stability con-
straint of Ref. [8]. Case (2) corresponds to the situation
in this article. If u? < 1, we follow Ref. [9] and rescale
z and y via z = KX*% and y = K;/“y. Equation (A2)
becomes

4 2 _ ot 292
83+ 02 + 2ud202 = V' — 2420202 (A3)

= (V" +ad:0;)(V' — adady) = 0,

where 202 = (1 — p) and V- = 92 + 82. The restrictions
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of case (1), which we are considering, imply 0 < pu? < 1
and 0 < a? < 1. Singular (i.e., dislocation) solutions to
Eq. (A3) are

=, (A4)

where b = (1 —a?)!/2. If only Eq. (A2) is given, the only
criterion for choosing which linear combination of these
solutions is the correct one is energetics. Reference [9]
chose the combination (u* +u7~)/2, which minimized the
energy. A more careful treatment of Gaussian curvature,
which contributes only at boundaries, would more than
likely yield some other combination.

If 42 > 1, then we can rescale z via £ = 1%, and Eq.
(A2) can be written as

Ky[(Ko/Ky)n*0g + 0, + (2Koy /Ky )n*0285]u = 0. (AS5)

Choosing (K. /Ky)n* =1+ 8% and (2K.y/Ky)n? = 2 +
3%, we obtain

Ky[V3(V? + B202)lu = 0

with 82 = 2[(u® — 1) + py/p?2 —1]. The disloca-
tion solutions are u = (d/2m)tan"!(y/z) and u =
(d/2m)tan~(y/4/1+ B2/z). For values of K, K,, and
K,y in this paper, p = 102K /[Ku.(K. + o*K,.)]'/?,
B? = o®?K./K,, and n = 1, and Eq. (4.11) is regained.
As discussed in Sec. IV A, the latter solution [Eq. (4.11)]
is imposed by the boundary conditions of our problem.

Thus, we see that the constraint K2, /(K.K,) < 1
imposed by Ref. [9] leads to different dislocation solutions
from those found here. This constraint is unnecessary
and does not apply to the model presented here.
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